Aminoglycosides (AGs) represent a prominent class of antibiotics widely employed for the treatment of various bacterial infections. Their widespread use has led to the emergence of antibioticresistant strains of bacteria, highlighting the need for analytical methods that allow the simple and reliable determination of these drugs in pharmaceutical formulations and biological samples. In this study, a simple, robust and easy-to-use analytical method for the simultaneous determination of five common aminoglycosides was developed with the aim to be widely applicable in routine laboratories. With this purpose, different approaches based on liquid chromatography with direct UV spectrophotometric detection methods were investigated: on the one hand, the use of stationary phases based on hydrophilic interactions (HILIC); on the other hand, the use of reversed-phases in the presence of an ion-pairing reagent (IP-LC). The results obtained by HILIC did not allow for an effective separation of aminoglycosides suitable for subsequent spectrophotometric UV detection. However, the use of IP-LC with a C18 stationary phase and a mobile phase based on tetraborate buffer at pH 9.0 in the presence of octanesulfonate, as an ion-pair reagent, provided adequate separation for all five aminoglycosides while facilitating the use of UV spectrophotometric detection. The method thus developed, IP-LC-UV, was optimized and applied to the quality control of pharmaceutical formulations with two or more aminoglycosides. Furthermore, it is demonstrated here that this methodology is also suitable for more complex matrices, such as serum, which expands its field of application to therapeutic drug monitoring, which is crucial for aminoglycosides, with a therapeutic index ca. 50%.
Loading....